Hydrogen-Bond Studies. LXXXIV.* An X-ray Diffraction Study of the Structures of KHCO_{3} and KDCO_{3} at 298, 219 and 95 K

By JohnO.Thomas, Roland Tellgren and Ivar Olovsson
Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

(Received 3 December 1973; accepted 5 January 1974)

Abstract

The crystal structures of normal and deuterated potassium hydrogen carbonate, KHCO_{3} and KDCO_{3}, have been studied at 298, 219 and 95 K using three-dimensional single-crystal X-ray data collected on a semi-automatic Stoe-Philips Weissenberg diffractometer. Both unit cells are monoclinic, containing four formula units and having the centrosymmetric space group $P 2_{1} / a$ (chosen to conform with previous work on KHCO_{3}). The cell dimensions at 298 K for KHCO_{3} are: $a=15 \cdot 1725$ (11), $b=5.6283$ (5), $c=3.7110$ (4) $\AA, \beta=104.631$ (6) ${ }^{\circ}, V=306 \cdot 62 \AA^{3}$; and for $\mathrm{KDCO}_{3}: a=15 \cdot 1948$ (9), $b=5.6307$ (3), $c=3.7107$ (3) $\AA, \beta=104.567(5)^{\circ}, V=307.27 \AA^{3}$. The KHCO_{3} structure, comprising $\left(\mathrm{HCO}_{3}\right)_{2}^{2-}$ dimers and K^{+}ions, is isomorphous with its deuterated counterpart. The heavy atoms of each HCO_{3}^{-}ion within the centrosymmetric dimer are closely coplanar at all temperatures, the separation between these planes being $\sim 0.22 \AA$. The two symmetry-related $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds within the dimer have lengths 2.585 (2), 2.592 (2) and $2 \cdot 591$ (2) \AA at 298,219 and 95 K , respectively. The corresponding lengths in KDCO_{3} are: 2.607 (2), 2.613 (2) and 2.606 (2) \AA, implying length increases of $0.022,0.021$ and $0.015 \AA$ on deuteration at the three temperatures. The final $R(F)$ values obtained for the refinements of KHCO_{3} were $0.037,0.028$ and 0.031 , respectively. The corresponding values for KDCO_{3} were 0.034 , 0.033 and 0.033 .

Introduction

For several years this Institute has been engaged in the systematic study of the effect of deuteration on the crystal structures of simple hydrogen-bonded compounds, e.g. $\mathrm{NaHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Tellgren \& Olovsson, 1971), $\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{H}_{2} \mathrm{O}$ (Kjällman \& Olovsson, 1972), $\mathrm{LiHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Thomas, 1972), $\mathrm{N}_{2} \mathrm{H}_{5} \mathrm{HC}_{2} \mathrm{O}_{4}$ (Thomas, 1973). It has been suggested (Thomas, 1972) that whereas isotopic substitution would appear to affect directly only $\mathrm{O} \cdots \mathrm{O}$ hydrogen bonds of length $\lesssim 2 \cdot 6 \AA$, secondary structural rearrangements can result in substantial changes in considerably longer bonds. The classic example of such a situation would be in α oxalic acid dihydrate (Delaplane \& Ibers, 1969), in which $\mathrm{O}-\mathrm{H} \cdot \mathrm{O}$ hydrogen bonds of lengths $2 \cdot 512,2 \cdot 864$ and $2.883 \AA$ all experience length increases of the order of $0.020 \AA$ on deuteration.

In an effort, therefore, to isolate better the effect of isotopic substitution within an individual hydrogen bond, we have here investigated a simpler hydrogenbond situation - the $\left(\mathrm{HCO}_{3}\right)_{2}^{2-}$ dimer in potassium hydrogen carbonate (Nitta, Tomiie \& Koo, 1952, 1954; Pedersen, 1968). It is unfortunate that even here we have two, albeit crystallographically equivalent, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds constituting the dimeric bridge. The ideal situation of a single, structurally independent hydrogen bond in a relatively simple structure would appear to be a rare phenomenon in nature. A further aspect of particular theoretical significance is the temperature dependence of the isotope effect. Although
the desirability of experimental measurement of the isotope effect at several temperatures has long been recognized, little work of any real value has been done. Earlier investigations based on cell parameter measurements alone (see the review by Gallagher, 1959) have since proved unreliable and can generally be ignored.

The amount of work which an investigation of this type involves has limited the present study to only three temperatures: 298,219 and 95 K . The thermal expansion occurring in both compounds over this temperature range has also been examined.

Crystal data

Potassium hydrogen carbonate, KHCO_{3}. F.W. $100 \cdot 12$. Monoclinic. Cell dimensions are given in Table 1. Space group: $P 2_{1} / a$ [equivalent to $P 2_{1} / c$, No. 14 in International Tables for X-ray Crystallography (1952)]. General position coordinates: $\pm\left(x, y, z ; \frac{1}{2}+x, \frac{1}{2}-y, z\right)$. $Z=4 . \mu_{\text {calc }}(\mathrm{Cu} K \alpha)=134 \cdot 2 \mathrm{~cm}^{-1}$. Deutero-potassium hydrogen carbonate, KDCO_{3}. F.W. 101•13. Monoclinic. Space group: $P 2_{1} / a, Z=4$. $\mu_{\text {calc }}(\mathrm{Cu} K \alpha)=134 \cdot 0$ cm^{-1}.

Experimental

Crystals of KHCO_{3} were obtained by recrystallization from a slightly warm, concentrated water solution of analytical grade KHCO_{3}. Clear lath-like crystals formed on cooling. The two crystals used for data collection measured $0.30 \times 0.15 \times 0.10 \mathrm{~mm} \quad(298 \mathrm{~K}$ data) and $0.34 \times 0.14 \times 0.09 \mathrm{~mm}(219$ and 95 K data). Crystals of KDCO_{3}, having the same general mor-

[^0]phology as KHCO_{3}, were obtained by first drying analytical grade $\mathrm{K}_{2} \mathrm{CO}_{3}$ by heating at 190 C for four days. Dried CO_{2} was then bubbled through a concentrated solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{D}_{2} \mathrm{O}(>99 \cdot 9 \%)$, whilst warming continuously at $80-90^{\circ} \mathrm{C}$. Crystals formed on allowing the solution to cool while still maintaining the passage of dried CO_{2}. The degree of deuteration achieved was estimated to be of the order of 95% by comparing the peak heights of the $\mathrm{O}-\mathrm{H}$ and $\mathrm{O}-\mathrm{D}$ stretching modes in the IR spectrum from the KDCO_{3} prepared. A rod-shaped crystal (length: 0.45 mm , cross section: $0.014 \mathrm{~mm}^{2}$) was selected for data collection and quickly sealed in a thin-walled glass capillary to preserve the level of deuteration. This crystal was used at all three temperatures.

The room-temperature cell parameters for both compounds were measured using a Guinier-Hägg powder camera calibrated with silicon [$a=5 \cdot 43054 \AA, \lambda(\mathrm{Cu}$ $\left.\left.K \alpha_{1}\right)=1.54051 \AA\right]$. The least-squares refinement used 52 and 53 observed θ values for KHCO_{3} and KDCO_{3}, respectively. Low-temperature cell parameters were obtained by superposing room and low temperature Weissenberg exposures, and using the room-temperature cell parameters as calibration standard (Thomas, 1974). The final KHCO_{3} refinements at 227 and 110 K each involved 58 observed θ values. The corresponding numbers for KDCO_{3} were 67 and 64. Cell parameters appropriate to the temperatures at which X-ray data were collected (219 and 95 K) were obtained by interpolation (Table 1).

The general suitability of the crystals chosen was checked and the validity of the $P 2_{1} / a$ space group assignment confirmed using standard X-ray photographic techniques. The adoption of a non-conventional space group was made to correspond with the choice made in earlier published works, especially in view of the possible confusion between the a axis and the [102] direction (Nitta et al., 1954). The data collection then proceeded in the order 95,219 and 298 K , the cooling being achieved using a cooled nitrogen gasstream technique (Olovsson, 1960). The low temperatures were determined by placing the junction of
a fine-gauge thermocouple at the crystal position. A semi-automatic Stoe-Philips Weissenberg diffractometer was used for the data collection, its geometry being particularly amenable to low-temperature work. The room housing the diffractometer was humidity controlled ($\sim 40 \%$) to reduce risk of frosting.

The diffractometer, operating in an equi-inclination geometry and in its $\omega-2 \theta$ scan mode, was steered by a pre-generated control tape carrying setting angles and scan specification for successive reflexions within a given layer. The appropriate μ-angle was adjusted manually and a new control tape supplied for each layer and at each temperature. Conveniently, the short cell-edge c lay parallel to the longest crystal edges. The choice of c as oscillation axis thus limited the number of accessible layers to four ($h k 0 \rightarrow h k 3$) when using $\mathrm{Cu} K \alpha$ radiation (Ni filtered). Two standard reflexions were selected in each layer and these were monitored every 30 reflexions measured during data collection. A bank of three 50% attenuators lay in the path of the incident beam. Automatic pre-selection of these $(0,1,2$ or 3$)$ and step-time $(\times 1, \times 2, \times 4$, $\times 8$ or $\times 16$) resulted in a possible absolute internal scale factor for a given reflexion of up to 128.

Sets of $\pm h, k, l$ reflexions were collected for $l=$ $0 \rightarrow 3$ and for detector arm deflexion angles of up to 140°. Systematically absent reflexions of the type $0 k 0$ for $k=2 n+1$ and $h 0 l$ for $h=2 n+1$ were not measured.

The integrated peak intensities were corrected for background and assigned standard deviations $\sigma_{c}(I)$ based on Poisson counting statistics as described by Jönsson \& Liminga (1971). Random deviations from the mean of up to $5 \sigma_{c}(I)$ were observed in the intensities of the standard reflexions; the average random fluctuations taken over the 8 standard reflexions were $\pm 2 \cdot 8, \pm 1 \cdot 0$ and $\pm 1 \cdot 0 \sigma_{c}(I)$ for KHCO_{3}, and $\pm 2 \cdot 0$, ± 0.9 and $\pm 0.8 \sigma_{c}(I)$ for KDCO_{3}. (Note: here and henceforth when three values appear they refer to the temperatures 298,219 and 95 K , respectively). The integrated intensities were corrected for Lorentz, polarization and absorption effects, resulting in six sets

Table 1. Cell dimensions in KHCO_{3} and KDCO_{3}; the values at 219 and 95 K are interpolated
Numbers in parentheses here and throughout this paper give the standard deviations in the least significant digits.
(a) KHCO_{3}

T	a	b	c	β	V	$D_{x}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$
298K	$15 \cdot 1725$ (11) \AA A	$5 \cdot 6283$ (5) \AA	3.7110 (4) \AA	104.631 (6) ${ }^{\circ}$	$306 \cdot 62 \AA^{3}$	$2 \cdot 169$
227	$15 \cdot 1562$ (18)	$5 \cdot 6197$ (8)	$3 \cdot 6891$ (6)	104.382 (11)	$304 \cdot 36$	$2 \cdot 185$
219	$15 \cdot 1538$ (20)	$5 \cdot 6186$ (10)	$3 \cdot 6868$ (10)	$104 \cdot 356$ (20)	304-10	$2 \cdot 187$
110	$15 \cdot 1193$ (18)	$5 \cdot 6057$ (8)	$3 \cdot 6630$ (6)	$104 \cdot 014$ (11)	301.21	$2 \cdot 207$
95	$15 \cdot 1150$ (20)	$5 \cdot 6044$ (10)	3.6609 (10)	$103 \cdot 980$ (20)	$300 \cdot 93$	$2 \cdot 210$
KDCO_{3}						
T	a	b	c	β	V	$D_{x}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$
298K	15.1948 (9) \AA	5.6307 (3) \AA	3.7107 (3) \AA	104.567 (5) ${ }^{\circ}$	$307.27 \AA^{3}$	$2 \cdot 186$
227	$15 \cdot 1722$ (17)	$5 \cdot 6194$ (6)	$3 \cdot 6905$ (6)	$104 \cdot 326$ (12)	$304 \cdot 86$	$2 \cdot 203$
219	$15 \cdot 1700$ (20)	$5 \cdot 6183$ (10)	$3 \cdot 6885$ (10)	$104 \cdot 297$ (20)	$304 \cdot 62$	$2 \cdot 205$
110	15•1367 (19)	$5 \cdot 6064$ (7)	$3 \cdot 6661$ (7)	$103 \cdot 983$ (14)	301.89	$2 \cdot 225$
95	15•1311 (20)	$5 \cdot 6054$ (10)	$3 \cdot 6644$ (10)	103.953 (20)	301.63	$2 \cdot 227$

of F_{o}^{2} and $\sigma_{c}\left(F_{o}^{2}\right)$ values. In all cases the crystals were described explicitly in terms of their six rational boundary planes. Transmission factors for KHCO_{3} were in the range $0 \cdot 146-0.359$ for the 298 K data-set and $0 \cdot 157-0.385$ for the 219 and 95 K data-sets. The transmission factors for KDCO_{3} at all three temperatures were in the range $0 \cdot 184-0 \cdot 336$. The calculated mean path lengths within the crystals were saved for each reflexion for use in subsequent corrections for extinction effects. The F_{o}^{2} values and path lengths were averaged for reflexions for the type $h k 0$ and $\bar{h} k 0$. Each data-set contained ~ 560 independent reflexions of which 540 , 554 and 555 for KHCO_{3} and 528,536 and 540 for KDCO_{3} had F_{o}^{2} values in excess of $2 \sigma_{c}\left(F_{v}^{2}\right)$ and were used in the subsequent least-squares refinements.

Refinements

KHCO_{3}
A series of full-matrix least-squares refinements were performed in which the function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, where $w=1 / \sigma^{2}(F)$. The $\sigma(F)$ values were derived assuming the relation: $\sigma(F)=\sigma\left(F^{2}\right) / 2 F$. In the final refinements the weighting schemes were modified by the substitution: $\sigma^{2}\left(F^{2}\right)=\sigma_{c}^{2}\left(F^{2}\right)+(0.05$ $\left.F^{2}\right)^{2}$; the intention being to weight down stronger reflexions, i.e. those most affected by random errors. That this had been achieved was checked by weight analyses following the final refinements. The agreement values quoted in Table 2 were calculated from the expressions:
and

$$
R(F)=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|
$$

$$
R_{w}(F)=\left[\sum w| | F_{o}\left|-\left|F_{c}\right|\right|^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}
$$

Table 2. Agreement values after the final refinements
$R(F)$ and $R_{w}(F)$ are defined in the text.

		$R(F)$	$R_{w}(F)$
		$R \mathrm{HCO}_{3}$	298 K
	219	0.037	0.052
	95	0.028	0.040
	KDCO_{3}	298 K	0.031
	219	0.034	0.051
	95	0.033	0.044
		0.033	0.043

The room-temperature refinement was made first, taking as starting values the heavy-atom positional parameters given by Pedersen (1968), the H atom position was obtained unambiguously from a Fourier difference synthesis. The 219 and 95 K refinements were then made in that order, using the final parameters from the 295 and 219 K refinements respectively as starting values. Inspection of F_{o} and F_{c} values following refinements using only a single overall scalefactor gave no indication that individual scale-factors for each layer were called for. Consequently, only a
single overall scale-factor was assumed to apply throughout. In the final refinements it was found necessary to remove from the data-sets 14,15 and 19 reflexions showing serious disagreement. These groups contained both strong and weak reflexions but had two features in common: all reflexions had low θ angles ($\sim 10^{\circ}$) and, with two exceptions, lay on the second and third layers. These reflexions suffer presumably from the well-known distortion affecting low θ, high μ-angle reflexions measured using an equi-inclination Weissenberg geometry system. Such a distortion can affect the measured intensities by varying amounts depending upon the crystal-, μ - and detector-angle settings.

The final refinements also included an isotropic extinction parameter g (Coppens \& Hamilton, 1970). All data-sets were found to be seriously extinctionaffected as evidenced by the high g values refined: 9640 (690), 5810 (340) and 3530 (310).

Table 3. Heavy-atom coordinates $\left(\times 10^{5}\right)$ and hydrogen and deuterium atom coordinates $\left(\times 10^{3}\right)$

For each atom the three rows are, from the top, the coordinates at 298,219 and 95 K .
(a) KHCO_{3}

K	x	y	z
	16533 (3)	2177 (10)	29533 (13)
	16561 (2)	3227 (7)	29500 (9)
	16595 (3)	3487 (8)	29497 (11)
H	11 (2)	682 (11)	-465 (9)
	16 (2)	694 (6)	-451 (7)
	25 (2)	704 (6)	-437 (9)
C	11967 (14)	51500 (30)	- 14363 (68)
	11977 (10)	52253 (25)	-14404 (48)
	11972 (14)	52447 (32)	-14471 (64)
$\mathrm{O}(1)$	19329 (11)	52915 (27)	9482 (55)
	19336 (7)	54280 (18)	9426 (35)
	19339 (10)	54594 (21)	9602 (45)
$\mathrm{O}(2)$	8221 (9)	31998 (31)	-27353 (42)
	8305 (7)	32869 (21)	-27406 (28)
	8305 (9)	32975 (28)	-27538 (37)
O(3)	7761 (9)	71772 (27)	-27448 (43)
	7657 (7)	72763 (19)	-27523 (26)
	7652 (8)	73126 (23)	27632 (34)
(b) KDCO_{3}			
	x	y	z
K	16540 (3)	2850 (9)	29583 (14)
	16564 (3)	3511 (9)	29554 (13)
	16597 (3)	3652 (8)	29521 (13)
D	21 (3)	691 (9)	-449 (10)
	21 (3)	691 (9)	-436 (10)
	20 (3)	698 (8)	-440 (10)
C	12005 (15)	51990 (37)	- 14296 (66)
	11998 (15)	52409 (38)	-14324 (65)
	11996 (15)	52529 (38)	-14310 (69)
$\mathrm{O}(1)$	19350 (11)	53839 (31)	9399 (54)
	19366 (11)	54640 (29)	9394 (50)
	19359 (10)	54843 (26)	9574 (50)
$\mathrm{O}(2)$	8330 (10)	32577 (30)	-27233 (47)
	8384 (10)	33107 (30)	-27292 (43)
	8350 (10)	33109 (29)	-27406 (44)
O(3)	7721 (11)	72337 (29)	-27330 (47)
	7660 (10)	72990 (28)	-27377 (43)
	7649 (10)	73230 (27)	-27458 (42)

KDCO_{3}

An exactly similar refinement procedure was employed here as for KHCO_{3} (see Table 2), except that the positional starting parameters were taken directly from the final room-temperature KHCO_{3} refinement. Poor agreement in certain low- θ, high μ-angle reflexions was also found in KDCO_{3} data-sets: 5,3 and 13 reflexions were removed from the final refinements. An isotropic extinction parameter g was again included in the refinements, resulting here in the values 6390 (420), 7300 (420) and 5470 (340).

The final positional and thermal parameters for the KHCO_{3} and KDCO_{3} refinements are given in Tables 3 and 4, and the corresponding observed and calculated structure factors (along with extinction coefficients) in Table 5. In all refinements the atomic scattering factors as well as the real $\left(\Delta F^{\prime}\right)$ and imaginary ($\Delta F^{\prime \prime}$) anomalous dispersion terms for K were taken from International Tables for X-ray Crystallography (1962). The atomic scattering factors for C and O were those
given by Hanson, Herman, Lea \& Skillman (1964); while the spherical scattering factors for H (and D) were those proposed by Stewart, Davidson \& Simpson (1965).

Computer programs

The following is a summary of the more important programs used in the course of this investigation. The first three were run on the departmental IBM 1800 computer and the remainder on an IBM 370/155.

THEXP: Calculation and plotting of thermal expansion diagrams; written by J.O. Thomas.
WITAK: Preparation of control tapes for a StoePhilips Weissenberg diffractometer; adapted by \AA. Kvick.
INTAK: Reduction of primary intensity data from a Stoe-Philips Weissenberg diffractometer; adapted by \AA. Kvick.

Table 4. Anisotropic thermal parameters $\left(\times 10^{4}\right)$
The form of the temperature factor is: $\exp \left[-\left(\beta_{11} h^{2}+\ldots+2 \beta_{12} h k+\ldots\right)\right]$. The r.m.s. components ($R_{i} \times 10^{3} \AA$) of thermal displacement along the principal axes of the thermal-vibration ellipsoids are also given along with the isotropic thermal parameters $B\left(\AA^{2}\right)$ for the hydrogen and deuterium atoms. The parameters appropriate to 298,219 and 95 K appear as in Table 3.

DATAPW: Corrections for Lorentz, polarization and absorption effects for data collected using a Weissenberg geometry. Mean pathlengths were calculated for use in a subsequent isotropic extinction correction; written by Coppens, Leiserowitz \& Rabinovich (1965) and modified for local use by J.O. Thomas.
UPALS: Full-matrix least-squares refinement pro$D R F: \quad$ gram; written by J.-O. Lundgren (1972). Fourier calculation program: rewritten by R. Liminga.

ORFFE: Crystallographic function and error program; written by Busing, Martin \& Levy (1964); modified for local use by \AA. Kvick.

ORTEP2: Thermal-ellipsoid plot program for stereoscopic illustration of crystal structures, with an added facility for avoiding overlaps; written and later augmented by
C.K. Johnson (1965); modified for local use by P.-G. Jönsson.

Description of the room-temperature structures

General

As found by Nitta, Tomiie \& Koo (1952), the KHCO_{3} structure comprises distinct K^{+}ions and $\left(\mathrm{HCO}_{3}\right)_{2}^{2-}$ dimers, the K^{+}ions having eight oxygen-atom neighbours. Both structures are closely isomorphous; a general view of KHCO_{3} is given in Fig. 1. Relevant distances and angles are listed in Table 6, and illustrated in Figs. 2 and 3. The standard deviations quoted have been calculated using the variance-covariance matrices after the last cycles of refinement; cell-parameter errors are also taken into account.

The K^{+}ion
The immediate environment of the K^{+}ion in KHCO_{3}

Table 5. Observed and calculated structure factors for (a) KHCO_{3} and (b) KDCO_{3} at 298,219 and 95 K
The 11 columns are, in order: $k, l,\left(100\left|F_{o}\right|, 100\left|F_{c}\right|, 100 E\right)$ at $298 \mathrm{~K},\left(100\left|F_{o}\right|, 100\left|F_{c}\right|, 100 E\right)$ at 219 K , and $\left(100\left|F_{o}\right|, 100\left|F_{c}\right|\right.$, $100 E$) at 95 K . Asterisks mark reflexions not included in the final refinements; E is the extinction correction factor multiplying F_{0}.
(a) KHCO_{3}

Table 5 (cont.)
(b) KDCO_{3}

 (1)

Mon

Fig. 1. A general stereoscopic illustration of the structure. The atoms of the asymmetric unit are labelled and the boundaries of the thermal vibration ellipsoids of all non-hydrogen atoms include 50% probability. Covalent bonds are filled, $\mathrm{O} \cdots \mathrm{O}$ hydrogen bonds are open and electrostatic $\mathrm{K}^{+}-\mathrm{O}$ contacts are drawn as thin lines.
is illustrated in Fig. 2. The striking similarity between corresponding $\mathrm{K}-\mathrm{O}$ distances in KHCO_{3} and KDCO_{3} (Table 6) indicates that the K^{+}ion experiences only a very minor packing rearrangement as a result of the isotope effect occurring within the $\left(\mathrm{HCO}_{3}\right)_{2}^{2-}$ dimers (see below).

The $\left(\mathrm{HCO}_{3}\right)_{2}^{2-}$ dimers

The internal geometry of the dimer is shown in Fig. 3, and its planarity is described in Table 7. The heavy atoms of each HCO_{3}^{-}ion are virtually coplanar, the carbon atom lying slightly (but consistently) out of the plane of the oxygen atoms. Contrary to earlier

Table 6. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ in KHCO_{3} and KDCO_{3} at 298, 219 and 95 K
Atoms not in the chosen asymmetric unit carry identifying subscripts: the first three digits refer to a lattice translation, e.g. 564 implies the operation $(x, y+1, z-1)$; the fourth digit specifies one of the symmetry operations:
(a) K^{+}ion
K^{+}ion

$\mathrm{K} \cdots \mathrm{O}(1)$
$\mathrm{K} \cdots \mathrm{O}(1)_{5451}$
$\mathrm{~K} \cdots \mathrm{O}(1)_{5454}$
$\mathrm{~K} \cdots \mathrm{O}(1)_{5464}$
$\mathrm{~K} \cdots \mathrm{O}(2)$
$\mathrm{K} \cdots \mathrm{O}(2)_{5561}$
$\mathrm{~K} \cdots \mathrm{O}(3)_{5451}$
$\mathrm{~K} \cdots \mathrm{O}(3)_{5461}$
$\mathrm{~K} \cdots \mathrm{O}$
(b)

CO_{3} group	
$\mathrm{C}-\mathrm{O}(1)$	$1 \cdot 240(3)$
$\mathrm{C}-\mathrm{O}(2)$	$1 \cdot 274(2)$
$\mathrm{C}-\mathrm{O}(3)$	$1.337(2)$
$\mathrm{C}-\mathrm{O}$	$1 \cdot 284$
$\mathrm{O}(1)-\mathrm{C}-\mathrm{O}(2)$	$124 \cdot 12(17)$
$\mathrm{O}(1)-\mathrm{C}-\mathrm{O}(3)$	$117 \cdot 74(16)$
$\mathrm{O}(2)-\mathrm{C}-\mathrm{O}(3)$	$118 \cdot 14(18)$

298 K
$3.008(2)$
$2.929(2)$
$2.875(2)$
$2.697(2)$
$2.742(2)$
$2.826(2)$
$2.784(2)$
$2.885(2)$
2.843

$$
\begin{array}{rrr}
x, & y, & z \\
\frac{1}{2}+x, \frac{1}{2}-y, & z \\
-x, & -y, & -z \\
\frac{1}{2}-x, & \frac{1}{2}+y, & -z .
\end{array}
$$

KHCO_{3}
219 K
$3.018(1)$
$2.905(1)$
$2.855(1)$
$2.693(1)$
$2.727(1)$
$2.802(1)$
$2.786(1)$
$2.885(1)$
2.834

95 K	298 K
$3.009(1)$	$3.024(2)$
$2.891(1)$	$2.919(2)$
$2.836(2)$	$2.873(2)$
$2.684(2)$	$2.699(2)$
$2.720(2)$	$2.735(2)$
$2.780(1)$	$2.816(2)$
$2.780(1)$	$2.790(2)$
$2.865(1)$	$2.895(2)$
2.821	2.844

KDCO_{3}	
219 K	95 K
$3.023(2)$	$3.015(2)$
$2.903(2)$	$2.888(2)$
$2.853(2)$	$2.836(2)$
$2.694(2)$	$2.686(2)$
$2.723(2)$	$2.717(2)$
$2.796(2)$	$2.79(2)$
$2.788(2)$	$2.782(2)$
$2.890(2)$	$2.873(2)$
2.834	2.822

(c) Hydrogen bond

Hydrogen bond	298K	$\underset{219 \mathrm{~K}}{\mathrm{KHCO}_{3}}$	95K	298K	$\underset{219 \mathrm{~K}}{\mathrm{KDCO}_{3}}$	95K
$\mathrm{O}(3) \cdots \mathrm{O}(2)_{5643}$	$2 \cdot 585$ (2)	$2 \cdot 592$ (2)	2.591 (2)	$\begin{gathered} 2 \cdot 607(2) \\ {[2.590]^{*}} \end{gathered}$	$\begin{gathered} 2 \cdot 613(2) \\ {[2.597]^{*}} \end{gathered}$	$\begin{aligned} & 2 \cdot 606(2) \\ & {[2.595]^{*}} \end{aligned}$
$\mathrm{O}(3)-\mathrm{H}$	1.09 (3)	1.00 (2)	0.87 (4)	0.96 (4)	0.93 (4)	0.95 (4)
$\mathrm{H} \cdot \cdots \mathrm{O}(2)_{5643}$	$1 \cdot 50$ (3)	$1 \cdot 59$ (2)	$1 \cdot 72$ (4)	$1 \cdot 66$ (4)	1.69 (4)	1.66 (4)
$\mathrm{O}(3)-\mathrm{H} \cdots \cdots \mathrm{O}(2)_{5643}$	$169 \cdot 8$ (5•7)	173.4 (2.9)	173.9 (3.2)	$170 \cdot 6$ (4.4)	$170 \cdot 2$ (4.6)	$173 \cdot 7$ (4.2)
$\mathrm{C}-\mathrm{O}(3)-\mathrm{H}$	$110 \cdot 8$ (3.3)	$110.7(1.8)$	$111 \cdot 5$ (2.3)	$110 \cdot 6$ (3.2)	107.9 (3.0)	109.9 (2.8)
$\mathrm{C}-\mathrm{O}(3) \cdots \mathrm{O}(2)_{5643}$	116.67 (12)	114.63 (9)	113.93 (11)	$115 \cdot 54$ (13)	114.11 (13)	113.79 (13)
$\mathrm{O}(3) \cdots \mathrm{O}(2)_{5643}-\mathrm{C}_{5643}$	124.90 (12)	127.03 (10)	$127 \cdot 54$ (12)	126.05 (14)	127.39 (14)	$127 \cdot 81$ (14)
$\mathrm{H} \cdots \cdots \mathrm{O}(2)_{5643}-\mathrm{C}_{5643}$	$120 \cdot 6$ (2.4)	$124 \cdot 5$ (1-1)	$126 \cdot 1$ (1-2)	123.0 (1.8)	123.9 (1.6)	$125 \cdot 6$ (1.6)

* Values in brackets result from combining positional parameters measured for KHCO_{3} with the appropriate cell paramet:rs for KDCO_{3}.

Fig. 2. The environment of the K^{+}ion. The distances and thermal vibration ellipsoids (scaled to 50%) apply to KHCO_{3} at 298 K . A more specific definition of the oxygen atoms is given in Table 6.
belief, however, the dimer as a whole deviates significantly from planarity, so reconciling the earlier result of Pedersen (1968) (based on p.m.r. studies) that the H atoms lie out of the plane of an otherwise closely planar dimer. The displacement of the planes of the CO_{3} groups observed here is by no means unusual for a carboxylic acid dimer configuration. The out-of-plane distortion of the HCO_{3}^{-}ion does not therefore need to imply (as argued by Pedersen) an intrinsic threat to the stability of the dimer. On the other hand, the suggested stabilizing effect of the lone-pair electrons of the carbonyl oxygens in a perfectly planar dimer configuration (Robertson, 1964) may be slightly diminished in the present case. It may be relevant to note that the more generally favourable linkage for HCO_{3}^{-}ions would appear to be either the one hydro-gen-bond linked dimer as in $\mathrm{Na}_{2} \mathrm{CO}_{3} . \mathrm{NaHCO}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ (Brown, Peiser \& Turner-Jones, 1949), or the hydro-gen-bonded linear chain as in NaHCO_{3} (Sass \& Scheuerman, 1962) and $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ (Brooks \& Alcock, 1950).

On the basis of the earlier observed $\mathrm{C}-\mathrm{O}(2)$ and $\mathrm{C}-\mathrm{O}(3)$ distances, 1.32 and $1.33 \AA$ respectively (Nitta
et al., 1952), it has been suggested by Hamilton \& Ibers (1968) that some degree of statistical disorder may be present in the orientation of the HCO_{3}^{-}ions in KHCO_{3}. Also, in a more general context, Currie, Speakman \& Curry (1967) draw attention to the large range of differences found in $\mathrm{C}-\mathrm{O}$ lengths in carboxylic groups ($0.04-0.12 \AA$), raising the possibility that disorder is present in those cases where the difference is small. It is found here that the $\mathrm{C}-\mathrm{O}(2)$ and $\mathrm{C}-\mathrm{O}(3)$ distances [1.274(2) and $1 \cdot 337(2) \AA$ respectively] differ considerably more than in the earlier study. Neither has any evidence been found in the final difference maps obtained from this X-ray study (even at low temperatures) to substantiate the earlier disorder speculations. Nevertheless, to enable the reader to make a more complete appraisal of the present paper, it is essential that the preliminary results of a current room-temperature neutron-diffraction study of KHCO_{3} and KDCO_{3} (Thomas, Tellgren \& Olovsson, 1974) be stated briefly here. Unequivocal evidence has been found in both compounds to suggest a $15-20 \%$ disordering effect of the type suggested earlier. The added

Table 7. The planarity of the $\left(\mathrm{HCO}_{3}\right)_{2}^{2-}$ dimer
The two parallel planes through the oxygen atoms of each HCO_{3}^{-}ion are taken as references; the notation is defined as follows:

Table 8. Nearest-neighbour interaction distances (\AA) associated with the oxygen atoms in KHCO_{3} and KDCO_{3} at 298,219 and 95 K

$\mathrm{O}(1)$	Interatomic contact	KHCO_{3}			KDCO_{3}		
		298 K	219 K	95 K	298 K	219 K	95K
	$\mathrm{O}(1) \cdots \mathrm{K}$	3.008	3.018	3.009	3.024	3.023	3.015
	$\mathrm{O}(1) \cdots \mathrm{K}$	$2 \cdot 929$	$2 \cdot 905$	$2 \cdot 891$	2.919	$2 \cdot 903$	$2 \cdot 888$
	$\mathrm{O}(1) \cdots \mathrm{K}$	2.875	$2 \cdot 855$	2.836	$2 \cdot 873$	$2 \cdot 853$	2.836
	$\mathrm{O}(1) \cdots \mathrm{K}$	2.697	2.693	2.684	2.699	$2 \cdot 694$	$2 \cdot 686$
	$\mathrm{O}(1)-\mathrm{C}$	1.240	1.242	1.248	1.239	1.244	1.247
	\sum_{5}	12.749	12.713	12.668	12.754	12.717	12.672
O(2)	$\mathrm{O}(2) \cdots \mathrm{K}$	2.742	2.727	2.720	2.735	2.723	2.717
	$\mathrm{O}(2) \cdots \mathrm{K}$	$2 \cdot 826$	$2 \cdot 802$	2.780	$2 \cdot 816$	$2 \cdot 796$	2.779
	$\mathrm{O}(2) \cdots \mathrm{O}(3)$	2.585	2.592	2.591	$2 \cdot 607$	$2 \cdot 613$	$2 \cdot 606$
	$\mathrm{O}(2)-\mathrm{C}$	1.274	1.262	1.264	1.266	1.255	1.262
	\sum_{4}	9.427	9.383	9.355	$9 \cdot 424$	9.387	9.364
$\mathrm{O}(3)$	$\mathrm{O}(3) \cdots \mathrm{K}$	2.784	2.786	2.780	2.790	2.788	2.782
	$\mathrm{O}(3) \cdots \mathrm{K}$	2.885	$2 \cdot 885$	2.865	2.895	2.890	$2 \cdot 873$
	$\mathrm{O}(3) \cdots \mathrm{O}(2)$	2.585	2.592	2.591	2.607	2.613	$2 \cdot 606$
	$\mathrm{O}(3)-\mathrm{C}$	1.337	1.354	$1 \cdot 360$	1.346	1.359	1.363
	$\Sigma 4$	9.591	9.617	9.596	9.638	$9 \cdot 650$	$9 \cdot 624$

complication which this discovery introduces into the discussion of the present results can readily be appreciated.

The room-temperature isotope effect

As seen from Fig. 3, the major isotope effect is the $0.022 \AA$ lengthening of the symmetry-related pair of

Fig. 3. Distances and angles within the dimers in (a) KHCO_{3} and (b) KDCO_{3} at 298 (top), 219 and 95 K . In both figures the thermal vibration ellipsoids (scaled to 50%) apply at 298 K .
2.585(2) \AA hydrogen bonds $\mathrm{O}(3)-\mathrm{H} \cdots \mathrm{O}(2)$ which link the HCO_{3}^{-}ions. This result is supported by the current neutron study and is well in line with previous isotope effects observed in bonds of this length (Thomas, 1972), suggesting that the magnitude of the isotope effect occurring here is generally unaffected by its being in a dimeric bridge. The $\mathrm{O} \cdots \mathrm{O}$ bond-length change is seen to be accompanied by changes in the lengths of those $\mathrm{C}-\mathrm{O}$ bonds within the HCO_{3}^{-}ion which involve the hydrogen-bond donor and acceptor oxygen atoms. The $\mathrm{C}-\mathrm{O}(2)$ distance in KHCO_{3} shortens by $0.008 \AA$ and the $\mathrm{C}-\mathrm{O}(3)$ distance lengthens by $0.009 \AA$ on deuteration. These effects can only be regarded as marginally significant, however.

The effect of temperature on the structures

General

The relevant distances and angles found for the lowtemperature structures of KHCO_{3} and KDCO_{3} are also given in Table 6. The $\mathrm{K} \cdots \mathrm{O}$ distances are seen to change considerably with temperature. On the other hand both the individual and the average $\mathrm{K} \cdots \mathrm{O}$ distances are again virtually identical in the two compounds at each temperature, suggesting the observed variations to be pure temperature effects independent of isotopic substitution.

A similar conclusion is reached from an inspection of Table 8 in which the sums of the interaction distances (both covalent and electrostatic) are derived for each of the oxygen atoms. It is seen that for $\mathrm{O}(1)$ and $\mathrm{O}(2)$ this sum is invariant under deuteration at a given temperature; the inconsistency in the case of O (3) probably derives from the inclusion of the $\mathrm{O}(3) \cdots \mathrm{O}(2)$ hydrogen-bond distance in the sum instead of the poorly determined covalent $\mathrm{O}(3)-\mathrm{H}$ distances. This invariance would appear to be related to the well established principle that the average distance for a given coordination is approximately constant. The same general degree of planarity is also found in the $\left(\mathrm{HCO}_{3}\right)_{2}^{2-}$ and $\left(\mathrm{DCO}_{3}\right)_{2}^{2-}$ dimers of the low-temperature structures (Table 7). The changes in the C-O lengths within the dimers, as illustrated in Fig. 3, are plotted in Fig. 4; no attempt is made to correct for the effects of thermal motion. Such corrections would require that some assumption be made as to the nature of the correlation expected in the thermal motion (e.g. Cruickshank, 1956; Schomaker \& Trueblood, 1968). For the case of $\left(\mathrm{HCO}_{3}\right)_{2}^{2-}$ dimers, however, it is highly uncertain as to what form this assumption should take. Neither rigidity of the dimer as a whole nor of the individual HCO_{3}^{-}ions would seem realistic assumptions. Moreover, Johnson (1970) warns against the use of a TLS-type analysis when the 'rigid body' in question comprises only a small number of atoms. It was therefore felt prudent to leave the values uncorrected for thermal motion (also see below).

Nevertheless, a number of clearly suggestive points do emerge from inspection of Fig. 4:
(a) The variations in the three $\mathrm{C}-\mathrm{O}$ distances with temperature are each very similar in KHCO_{3} and KDCO_{3}.
(b) These variations are generally greater in the $298-219 \mathrm{~K}$ range.
(c) At all three temperatures, the $\mathrm{C}-\mathrm{O}$ bond lengths involving the donor and acceptor oxygen atoms of the hydrogen bond undergo the more significant changes on deuteration.
(d) The average $\mathrm{C}-\mathrm{O}$ distance at each temperature is identical in KHCO_{3} and KDCO_{3}; this average increases slightly with decreasing temperature.

It is expected that the individual $\mathrm{C}-\mathrm{O}$ distances of an HCO_{3} group are mutually dependent, and moreover that the average $\mathrm{C}-\mathrm{O}$ distance is the same in related compounds. In this case we notice that this average is indeed the same in KHCO_{3} and KDCO_{3} at a given temperature. However, the mutual dependence of the $\mathrm{C}-\mathrm{O}$ bond lengths would appear only to affect the $\mathrm{C}-\mathrm{O}(2)$ and $\mathrm{C}-\mathrm{O}(3)$ bonds, i.e. those more directly involved in hydrogen bonding. The $\mathrm{C}-\mathrm{O}(1)$ (and $\overline{\mathrm{C}-\mathrm{O}}$) distance is practically the same in KHCO_{3} and KDCO_{3} at a given temperature; the smaller changes observed with temperature are probably artifacts of thermal motion.

There is also some indication from Fig. 5 that the $\mathrm{O} \cdots \mathrm{O}$ distances tend not to vary with temperature in the same way in the two compounds; an observation which finds some support in thermal-expansion measurements made on KHCO_{3} and KDCO_{3}.

Thermal expansion

Polar diagrams of the mean coefficients of linear thermal expansion as deduced from cell-parameter measurements at 298,227 and 110 K (Thomas, 1974) are given in Figs. 6 and 7. The figures are drawn using the program THEXP. It will be seen that the thermal expansion is highly anisotropic with a maximum occurring roughly in the direction perpendicular to the planes of the dimers, and a minimum (in fact, becoming negative in all of the cases shown) roughly in the direction of the hydrogen bond. This behaviour is in good general agreement with the predictions of Lonsdale (1959) as to the nature of the thermal expansion anisotropy in this type of system. It will also be noted that the thermal expansions in the two compounds exhibit certain differences, the most significant of these arising in a region of solid angle in the vicinity of the thermal expansion minima. These differences in thermal expansion behaviour reappear as differences in the response of the $\mathrm{O} \cdots \mathrm{O}$ hydrogen-bond distances in KHCO_{3} and KDCO_{3} to changes in temperature. This qualitative correspondence supports the dissimilarity found in the variations of the $\mathrm{O} \cdots \mathrm{O}$ distances in KHCO_{3} and KDCO_{3} with temperature as depicted in Fig. 5.

Temperature dependence of the isotope effect

One point must first be made in this connexion:
the differences observed in a normal and a deuterated system are implicitly related to differences in the nature of the thermal motion of the two systems, i.e. different thermal corrections apply in the two cases. However, since the object of the present study is to observe the effect of temperature on the isotope effect, it is arguable whether it is relevant to make such corrections here.

Fig. 4. The variation of $\mathrm{C}-\mathrm{O}$ lengths with temperature in KHCO_{3} (unbroken lines) and KDCO_{3} (dashed lines).

Fig. 5. The variation of $\mathrm{O} \cdots \mathrm{O}$ distance with temperature.

It will be seen from Table 6 that the $\mathrm{O} \cdots \mathrm{O}$ distances in KDCO_{3} exceed those in KHCO_{3} by 0.022 , 0.021 and $0.015 \AA$; the differences between these values are hardly significant. Furthermore, the isotope effect at 95 K can be expected to differ minimally from that at 0 K (see Gallagher, 1959). This would imply that the isotope effect (though possibly diminishing slightly with temperature) does not tend to zero at absolute zero, so confirming the generally held view that isotope effect is essentially a zero-point-energy phenomenon. It must be noted, however, that this discussion has
made the highly tenuous assumption that the fractional disordering effect has no influence on the isotope effect observed in the hydrogen bonds. The extent to which this assumption is justified will be discussed later in an analysis of the results of the neutron diffraction study.

A final comment

This paper serves as yet another warning of the inherent inadequacies of even an accurately carried out X-ray diffraction investigation of a hydrogen-bonded

(a)

(a^{\prime})

($a^{\prime \prime}$)

(b)

(c)

(c^{\prime})

($\left.c^{\prime \prime}\right)$

Fig. 6. Polar diagrams of the mean coefficient of linear thermal expansion ($\bar{\alpha}$) in the $(a)(0 k l)$, (b) ($h 0 l$) and (c) ($h k 0$) planes. The dimer containing part of the chosen asymmetric unit is shown in projection along the a, b, and c axes in parts (a), (b) and (c). Parts $\left(a^{\prime}\right)-\left(c^{\prime}\right)$ show the thermal expansion in KHCO_{3}, and parts $\left(a^{\prime \prime}\right)-\left(c^{\prime \prime}\right)$ the thermal expansion in KDCO_{3}. The curves labelled 1,2 and 3 refer to the temperature ranges $227-298 \mathrm{~K}, 110-298 \mathrm{~K}$ and $110-227 \mathrm{~K}$, respectively. All curves are reproduced on the same scale which is defined by the axial scale $\left[\times 10^{-6}\left({ }^{\circ}\right)^{-1}\right]$.

Fig. 7. An enlargement ($\times 14$) of the detail near the origin in Fig. $6\left(b^{\prime}\right)$ and $6\left(b^{\prime \prime}\right)$. Note here that the curves for the different temperature ranges no longer overlap but are given separately: $(a)-(c)$ for KHCO_{3} and $(d)-(f)$ for KDCO_{3}.
system. The subsequent discovery of a fractional disorder effect in both KHCO_{3} and KDCO_{3} draws into question the full meaningfulness of some of the present findings and, to say the least, exposes KHCO_{3} as a slightly unfortunate choice as subject for a study of this type.

The authors wish to thank those members of the Hydrogen-Bond Studies group and the technical staff of this Institute who have assisted in this work. Financial support has been provided by the Swedish Natural Science Research Council, and the Tricentennial Fund of the Bank of Sweden; this support is hereby gratefully acknowledged.

References

Brooks, R. \& Alcock, T. C. (1950). Nature, Lond. 166, 435-436.
Brown, C. J., Peiser, H. S. \& Turner-Jones, A. (1949). Acta Cryst. 2, 167-174.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Cruickshank, D. W. J. (1956). Acta Cryst. 9, 757-758.
Currie, M., Speakman, J. C. \& Curry, N. A. (1967). J. Chem. Soc. (A), pp. 1862-1869.
Delaplane, R. G. \& Ibers, J. A. (1969). Acta Cryst. B25, 2423-2437.
Gallagher, K. J. (1959). Hydrogen Bonding. Edited by D. Hadzi. New York: Pergamon Press.

Hamilton, W. C. \& Ibers, J. A. (1968). Hydrogen Bohding in Solids, p. 163. New York: Benjamin.

Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Johnson, C. K. (1970). Crystallographic Computing. Edited by F. Ahmed. Copenhagen: Munksgaard.
Jönsson, P.-G. \& Liminga, R. (1971). Acta Chem. Scand. 25, 1729-1741.
Kjällman, T. \& Olovsson, I. (1972). Acta Cryst. B28, 1692-1697.
Lonsdale, K. (1959). Z. Kristallogr. 112. 188-212.
Lundgren, J.-O. (1972). UPALS, a Crystallographic Fullmatrix Least-squares Refinement Program. UUIC-B13-3, Inst. of Chemistry, Univ. of Uppsala, Sweden.
Nitta, I., Tomie, Y. \& Koo, C. H. (1952). Acta Cryst. 5, 292.

Nitta, I., Tomie, Y. \& Koo, C. H. (1954). Acta Cryst. 7, 140-141.
Olovsson, I. (1960). Ark. Kem. 16, 437-458.
Pedersen, B. (1968). Acta Cryst. B24, 478-480.
Robertson, J. H. (1964). Acta Cryst. 17, 316.
Sass, R. L. \& Scheuerman, R. F. (1962). Acta Cryst. 15, 77-81.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Tellgren, R. \& Olovsson, I. (1971). J. Chem. Phys. 54, 127-134.
Thomas, J. O. (1972). Acta Cryst. B 28, 2037-2045.
Thomas, J. O. (1973). Acta Cryst. B29, 1767-1776.
Thomas, J. O. (1974). Chem Script. 4, In the press.
Thomas, J. O., Tellgren, R. \& Olovsson, I. (1974). To be published.

[^0]: * Part LXXXIII: Chem. Script. (1974). 4. In the press.

